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A method which enables one to establish a non-regularity property of the motion of fluid particles (known as chaotic adveetion 
or Lagrangian turbulence) for typical steady flows is developed. The method is based on expanding solutions of the equations 
of motion of a continuous medium in powers of a small parameter and using the conditions for the destruction of invariant resonant 
toil when perturbations are added. It is shown that the velocity field, defined as the solution of the Burgers equations, generates 
a generally non-regular dynamical system. For an ideal barotropic fluid in an irrotational force field, the method proposed yields 
a well-known necessary condition for chaotization: the velocity field is collinear with its curl. Special attention is given to 
investigating the chaotization of typical steady flows of a heat-conducting perfect gas. © 2003 Elsevier Science Ltd. All rights 
reserved. 

1. R E G U L A R  A N D  C H A O T I C  S T E A D Y  F L O W S  

Consider the steady flow of a fluid in a domain D of a three-dimensional Euclidean space R 3 = {x, y, 
z}. In what follows we shall consider mainly flows which are 2n-periodic in the coordinates x and y; in 
that case the domain D will be a direct product T 2 x R. where T 2" = {x, y mod 2n} is a two-dimensional 
torus. The steady velocity field v is found as a solution, not explicitly dependent on the time t, of the 
equations of motion of a continuous medium. Examples of specific models of continuous media will 
be considered below. 

The motion of the fluid particles is described by an autonomous dynamical system 

dx/dt = v(x), x ~ D. (1.1) 

Let gt be the phase flow. The action of the group gt on the domain D is advection (the transport of the 
fluid particles). Chaotic advection is known as Lagrangian turbulence. 

A rigorous study of Lagrangian turbulence presupposes the availability of a rigorous definition of 
chaoticity of dynamical system (1.1). However, for a variety of reasons, it is impossible to formulate a 
universal property of chaoticity. Chaoticity is naturally contrasted with the regular behaviour of system 
(1.1). There are various non-equivalent approaches to defining a regular dynamical system (see, e.g. 
[1]). Common to them is the existence of non-trivial tensor invariants. The simplest of them are integrals, 
fields of symmetries and integral invariants. 

We recall that a locally non-constant function f :  D ~ R is called an integral of system (1.1) if 

df/dt = Of /~x, v) = 0 

The flow domain is stratified into invariant integral surfaces Nc = {x ~ D:f(x) = c}. If a surface Arc is 
compact (i.e. bounded) and the velocity v nowhere vanishes on it, the surface is topologically equivalent 
to a two-dimensional toms. 

A field w is called afield of symmetries if [v, w] = 0, where [., .] is the Jaeobi bracket. We are interested 
in non-trivial fields of symmetries, when the vectors v and w are not coUinear. The phase flow of a 
field w transforms solutions of system (1.1) into solutions of the same system. A more general 
concept is that of a frozen-in field of directions w, defined by the condition [v, w] = Xw, where X is 
some function defined in the domain D. A flow gt transforms the family of integral curves of the field 
w into itself (see [2, 3]). The symmetry properties of fluid flow play an important role in the theory of 
turbulence [4]. 
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A differential 1-form to generates an integral invariant if 

l ( t )=  ~ t0=const  
gt¥ 

for all closed cycles y. Of  course, one must also assume that do) ~ 0 (to does not reduce to a total 
differential). Otherwise, I(t) - const. 

An instructive example of a regular flow is the steady flow of a barotropic viscous fluid in an irrotational 
force field. It admits of an integral (the Bernoulli integral), a field of symmetries (w = p-1(rot v), where 
9 is the density of the fluid) and an integral invariant (the circulation of the fluid around a closed fluid 
contour). The field of symmetries was determined in [5]; in the case of a uniform fluid (9 - const), it 
was pointed out before that in [6]. 

A necessary condition for the Bernoulli integral and the aforementioned field of symmetries to be 
non-trivial is that the field v should not be collinear with its curl. This condition is essential. For example, 
it is not satisfied for the well-known ABC-flow, and this flow is generally not regular. 

It has been shown [7] that typical steady flows of a viscous fluid are not regular and possess chaotic 
properties. On the other hand, as we know, turbulence occurs at high Reynolds numbers. At fixed 
characteristic scales and flow velocity, this is equivalent to reducing the viscosity. However, as already 
indicated, at zero viscosity, typical steady fluid flows become regular. 

2. C O N D I T I O N S  F O R  T H E  E X I S T E N C E  OF T E N S O R  I N V A R I A N T S  

In a small neighbourhood of any non-singular point, system (1.1) has all tensor invariants: a non-constant 
integral, a non-trivial field of symmetries and an integral invariant. The situation changes radically when 
one considers the problem of whether invariants exist in the large (i.e. are defined in the entire flow 
domain D). It turns out that dynamical systems of general form do not have non-trivial global invariants. 
This fact is of paramount importance in continuum mechanics. 

Example. Suppose the fluid is incompressible. It then follows from the equation of continuity that the density 
p is a first integral. If Eqs (1.1) do not admit of non-constant integrals, then p - const (that is, the fluid is uniform). 
In the case of regular flows, generally speaking, 9 ~ const. 

The derivation of constructive conditions for the regularity or chaoticity of a dynamical system (1.1) 
is a very complicated problem. It has been discussed for the dynamical systems of classical dynamics 
in [8]. 

Let us confine our attention in the domain T 2 x R to autonomous systems of the following form: 

dxldt=vo+~Vl+. . . ;  x=(x,y,z),  vi=(ui, vi,wi), i=0,1  ..... w0--0  (2.1) 

where ui, oi and wi are analytic functions where are 2n-periodic in x and y; u 0 and o 0 depend only on 
the "slow" variable z and e is a small parameter. Systems of this form are frequently encountered in 
the theory of linear oscillations. When e = 0 we have a completely integrable (and therefore regular) 
dynamical system: its phase space is stratified into invariant tori z = const filled by conditionally periodic 
trajectories with frequencies Uo(Z) and Oo(Z). 

The tensor invariants of system (2.1) are naturally sought as series in powers of e with coefficients 
which are single-valued and analytic in the domain T 2 x R. For example, the integral has the form 
fo + ell + .... where fk are analytic 2n-periodic functions and x and y. 

Let ~Wmn(Z)e i(mx+ny) be the Fourier series of the function wv The Poincar~ set P is defined as the set 
of points z ~ ~ satisfying the conditions 

muo(z)+nuo(z)=O, Wm(z)~O (m 2 + n  2 S 0 )  (2.2) 

In the general case, the set P is everywhere dense in the real line R = {z}. Relations of type (2.2) with 
integers m and n are called resonances. The unperturbed system (when e = 0) is said to be non-degenerate 
if muo(z) + noo(Z) ~ 0 for all integers m and n not both zero. 

A simple sufficient condition for non-degeneracy is the following: U6Oo- UoO6 ~ -0. The prime denotes 
differentiation with respect to z. 

Theorem 1. Let us assume that the unperturbed system is non-degenerate and that the Poincar6 set 
has at least one finite limit point. Then system (2.1) does not admit of non-trivial integrals and frozen- 
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in fields of directions analytic in e. If moreover Woo(Z) ~ 0, then system (2.1) does not admit of non- 
trivial integral invariants. 

The absence of integrals follows from the more general results of [8], which generalize Poincar6's 
theory of obstructions to the integrability of Hamiltonian systems that differ slightly from completely 
integrable systems [9]. Cases have been established in which no frozen-in fields of directions and integral 
invariants exist [3, 7]. The following point is worthy of note: the conditions of Theorem 1 guarantee 
the absence of non-trivial invariants which can be expressed as formal (not necessarily convergent) power 
series in e. 

The chaotization mechanism of system (2.1) consists of the fact that typical resonant tori are destroyed 
when a perturbation is applied: these tori are replaced by "islets" with chaotic behaviour of the 
trajectories, and their dimensions for small e values increase as a rule as e increases; in addition, the 
typical size of the "islets" of instability decreases as the order of the resonance Iml + Inl increases. 
Under certain additional conditions, the resonant tori are replaced by pairs of non-degenerate periodic 
trajectories, one elliptic and the other, hyperbolic. The intersecting separatrices of the hyperbolic periodic 
trajectories form a tangled net, in whose neighbourhood there are quasi-random trajectories (for 
examples from hydrodynamics see [7]). 

There is a simpler sufficient condition for a non-degenerate system (2.1) to have no first integrals 
which are analytic functions of the parameter e 

(wl) = Woo(Z) ~ 0 (2.3) 

Indeed, let f = fo + ell + e2f2 + ... be a non-constant first integral. In the light of our assumption 
that system (2.1) is non-degenerate when e = 0, the function f0 is independent of the angular coordinates 
x and y [8]. In the first approximation in e, the condition df/dt = 0 becomes 

f~wl + Uo~ / ~X +U oi)fz / ~y = O 

After averaging over the angular coordinates x and y, we obtain the equation f'oWoo = 0. Since there 
are no divisors of zero in the ring of analytic functions, it follows from condition (2.3) that fb = 0. 
Consequently, f0 - const and function ( f - f o ) / e  = f l  + el2 + ... will be an integral of system (2.1). We 
again obtain fl - const. Continuing the process, we obtain the equalitiesfn - const, n I> 0. Consequently, 
f -  const. 

Note that condition (2.3) is formal in nature and unconnected with the chaotization of the trajectories 
of system (2.1). If system (2.1) was obtained from a Hamiltonian system after reducing the Whittaker 
order, then condition (2.3) is surely not satisfied [8]. 

Here is a simple example of a system satisfying condition (2.3) which has integrals that are non-analytic 
functions of the parameter e 

d x l d t = l ,  dy ld t=uo (Z )+¢u t  + .... d z l d t = ¢  (2.4) 

Here (wl) = 1, and therefore the system does not admit of single-valued first integrals analytic in e. 
However, for all e ~ 0 it has an integral sin(x - z /e )  which is a 2n-periodic function ofx and is not analytic 
in e when e = 0. 

Note that system (2.4) admits of an analytic invariant 1-form co = edx - dz. This does not contradict 
Theorem 1, since here the Poincar6 set is empty. 

The presence of finite limit points of the Poincar6 set apparently implies that no non-constant analytic 
invariants exist at small fixed values of e ~ 0. However, this remains to be proved. 

3. APPLICATION TO B U R G E R S  EQUATIONS 

A general method has been proposed to investigate the regularity property of typical steady flows of 
an incompressible viscous fluid [7]. One looks for solutions of the Navier--Stokes equations as series 
in powers of the parameter e of the form of (2.1), and then applies Theorem 1. It turns out that typical 
steady flows are chaotic (in the sense indicated in Section 2), though some flows (such as 
Hagen-Poiseuille flow in a cylinder) may be regular. This result shows that the classical results of 
Bernoulli, Helmholtz, and Thomson on invariants of flows of an ideal fluid cannot be extended to the 
case of a viscous fluid. 

It has been shown [7] that this conclusion also holds for the simplified Navier-Stokes equations 
ignoring inertial terms (the Stokes approximation). 
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Let us demonstrate the possibilities of applying the method to the Burgers equations, which are also 
a simplification of the Navier-Stokes system (a fluid without pressure). These equations are [10] 

dvldt = v Av (3.1) 

where v = const > 0 is the kinematic coefficient of viscosity. These equations have a series solution 

V=Vo+eV I+  .... v o=(uo,vo,O),  vl=(Ul,  Vl,wl) 

where 

u0 = o.z + 1~, v0 =~Z+8 (3.2) 

and Ix, 15, ~' and ~5 are arbitrary constants. The function v I satisfies the linear differential equation 

O 
Lv l+c twt=vAvi ;  L=U0~x'x+V0~yy, a=( ix ,  T,0) 

This equation is easily solved by the Fourier method. Let Um~, Vm~ and Wren be the Fourier coefficients 
of the velocity components ul, ol and wl, respectively; they are functions ofz. These coefficients satisfy 
a linear system of ordinary differential equations, which we write in vector form 

i(mu 0 + no o )V,, m + aW,,~ = v[--(m 2 + n 2 )Vmn + V ~  ], V ~  = (Umn, V,,m, Wren). (3.3) 

Each solution of this system is defined on the entire real line R = {z} and is uniquely defined by the 
values of Um~, Vm~, Wmn and their derivatives at some point Zmn. Set 

Zmn = -(m~ + nS) ~(mix + ny) 

This point is a root of the equation muo + noo = O. 
Suppose that 

(3.4) 

(3.5) 

This is the condition for the unperturbed system to be non-degenerate. In addition, taking condition 
(3.5) into consideration, we conclude that the set of points (3.4) is everywhere dense in the real line 

= {z}. If Wmn(Z,,m) ~ 0 (the typical case), the Poincar6 set is everywhere dense and therefore (by 
Theorem 1) a typical steady flow in the Burgers model has no non-constant integrals and non-trivial 
frozen-in-fields of directions. Furthermore, when m = n = 0 the system of equations (3.3) is non- 
degenerate and we may therefore assume in the general case that W00* 0. In the general case, therefore, 
there are no non-trivial integral invariants either. 

Now put v = 0. Then the Burgers equations (3.1) become the Hopf  equations, which describe the 
inertial motion of a Collisionless continuous medium: 

Ov/8t + vOv/~x = 0 

By condition (3.5), one of the numbers Ix or ~( must not vanish. Consequently, it follows from (3.3) that 
Wren(z) = 0 for z = Zmn. In the case under consideration, therefore, the Poincar6 set is empty and 
Theorem 1 is not applicable. 

Of course, this is no accident: For the Hopf  system, Eqs (1.1) admit of an integral f = (v, v), a field 
of symmetries w = rotv, and an integral invariant 

(v, dx)  = const  

4. T H E  N E C E S S A R Y  C O N D I T I O N  F O R  C H A O T I C I T Y  OF 
F L O W S  OF AN I D E A L  F L U I D  

It is instructive to apply the method developed above to Euler's equations for the flow of an ideal fluid. 
In that case Theorem 1 yields a condition for the chaotization of steady flows: the velocity field is collinear 
with its curl. 
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To simplify the notation, we will confine ourselves to the case of a uniform fluid (p = const). The 
equations of motion in an irrotational field have the form 

dv/dt = --3tic'x, div v = 0 (4.1) 

where f = p/p + V, p is the pressure and V is the potential of external bulk forces. 
We will seek a solution of Eqs (4.1) in series form 

v = v o + Ev I + . . . .  w o = O, f = A + Efl + . . . .  f o  = e o n s t  

where u0 and u0 are arbitrary analytic functions ofz. 
In the first approximation in e, we have the following system of partial differential equations (the 

prime denotes differentiation with respect to z) 

Lvl+v~w I =--~fl/OX, divv I =0  

Solving this equation by Fourier's method, we obtain the equations 

i(mu o +nvo)Um~ + U6Wmn + imFmn = 0 

i(mu 0 +nvo)V~ +u~W,n n + inFran = 0 

i(mu 0 + nv O) Wren + F~= 0 

i(mUm, + nVm,) + W~ = 0 

(4.2) 

Let us assume that the assumptions of Theorem 1 are satisfied and that steady flow does not admit 
of invariants as power series in e. Then the Poincar6 set P contains infinitely many distinct points Zmn 
that accumulate in a finite interval of the real axis • = {z}. Since at these points muo + nOo= 0, but 
Wren ~ O, it follows from the first two equations of system (4.2) that nu6 - mo6 = 0. Hence the following 
equation is true on P 

UoU ~ +v 0 v~ = 0 (4.3) 

Since the set P has finite limit points, and the function u0 and o0 are assumed to be analytic, Eq. (4.3) 
is true everywhere. It remains to observe that Eq. (4.3) is equivalent to the condition that the vector 
fields rotv and v are coUinear when e = 0. 

In fact, the collinearity of these fields in the first approximation in E may be derived from system 
(4.2). For example, the collinearity condition projected onto the z axis is 

3Ul / ~X--~Ui /~y=~.oWJ, ~'0 =2t0(Z) 

This is equivalent to an infinite chain of algebraic relations for the Fourier coefficients 

i(mVm~ -nUmn)= ~.o Wmn (4.4) 

On the other hand, it follows from Eq. (4.3) that u~ = btu0, o0 = -~tu0, where ~ is some function. 
Substituting these relations into Eqs (4.2) and using the fact that the unperturbed system is non- 
degenerate and that the ring of analytic functions contains no divisors of zero, we obtain (4.4), in which 
~.0 = ~. 

5. STEADY FLOWS OF A P E R F E C T  GAS 

Let us apply our method to the case of a perfect gas, whose dynamics is described by the following 
closed system of equations 

p d v /d t=- -3 p /~x+p F ,  d p / d t + p d i v v = O ,  p = b p x  

padx/ dt = bxdp/ dt + xA'C (5.1) 

The first equation is Euler's equation (F is the external force), the second is the equation of continuity, 
the third is the equation of state (~ is the absolute temperature and b is the gas constant), and the 
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fourth is the heat flux equation (a and × = const are the heat capacity and thermal conductivity, 
respectively). 

We will first consider the simple case when × = 0. The fourth equation of (5.1) then immediately 
yields the integral 

g = x l p  ~, ~ .=b /a  (5.2) 

If the external forces are irrotational (F = -aV/ax), one has a generalized Bernoulli integral 

f = (v ,v)12+(a+b) 'c+ V 

This means that when × = 0 the typical steady flows of a perfect gas are regular. Moreover, if the flow 
domain D is compact and the functionsf and g are almost everywhere independent, then the trajectories 
of almost all fluid particles are dosed: the particles move in dosed orbits, generally with different periods. 

The situation changes radically when × ~ 0; a typical steady gas flow in an arbitrary rotational force 
field does not generally admit of non-constant integrals. 

Let X, Y and Z be the components of the vector field F; they are functions of x, y and z which are 
2~-periodic in x and y. Let us consider the case in which they are represented in the form of series in 
powers of the parameter 

x = + . . . .  r = + . . . .  z=z0  +ez  +... 

Where Z0 is an analytic function of z. When e = 0 this force field is irrotational. 
We will seek solutions of system (5.1) a power series 

v f v 0 + g v l +  .... p = p0 +v.01 + .... "c = ~0 + E'~I +.. .  

v0 = (uo,Vo,0), vl=(ul ,Ul,wj)  

(5.3) 

The function Xo depends linearly on z; Uo and o0 are arbitrary functions ofz and P0 is found as a function 
of the height z from the equation 

Z o = b(PoXo)'/po 

We will confine ourselves to the special case in which u0 and o0 are linear functions of z of the form 
(3.2), with ix5 - y[3 g 0. We again define the numbers Zmn by formula (3.4). 

Let X,,,n and Ymn be the Fourier coefficients of the functions X1 and Y1, respectively. 

Theorem 2. If n X m n  - myron ~ 0 (m 2 + n 2 ~ 0) for z = zmn, then the aforementioned steady flows of 
a perfect gas do not admit of non-trivial invariants analytic in e. 

It is clear that rotational force fields of general form satisfy the assumption of Theorem 2. The proof 
relies on Theorem 1. 

Substituting expansions (5.3) into system (5.1), we obtain a chain of partial differential equations of 
the successive determination of the coefficients. In the first approximation in e, we obtain alinear system 
in ul ... Pl, x], which is easily solved by Fourier's method. The Fourier coefficients Umn, ... P,~, T,,~ 
satisfy the following system algebraic-differential equations 

i(muo + nVo) Umn + u~ Wren = -ibmA,nn + Xm~ 

i(rau 0 + nVo) Vmn +v~ W~n = -ibnAmn + Ymn 

i(rau o + nuo ) Wren = -bA~. - bp~poITmn + bX~poI Pm~ + Z ~  

• W ~ ) - 0  (5.4) i(mu o +nuo)pmn + P0Wmn + po(imU,nn + inV~ + • - 

a[i(mu 0 + nu 0 )T~ + x~ W~ ] = bxoPo I [i(muo + noo) P~ + P'o W~ ] + 

+xpo i ITS, - (m 2 + n 2 )Tmn l 

where Amn = T m  + P01(xoPmn)- 
The first two equations uniquely define the coefficients Umn and Vmn. These functions will be analytic 

on the line R = {z}, if and only if the following equations hold when z = Zm~ 
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o~W~ + m(iOA~) = X ~ ,  yWmn + n(ibAmn) = Ym,, 

By the non-degeneracy condition, the determinant of this system does not vanish when m 2 + n 2 ~ 0. 
Consequently, the quantities W,,n and A,,n are uniquely defined at Zm~, and (by the assumption of 
Theorem 2) Wmn(Zmn) ~ O. 

Substituting the expressions found for Umn and Vm~ into the other equations of (5.4), we obtain a 
system of linear differential equations for Wren, P,~ and q',~, of orders 1, 1, and 2, respectively. Its 
solutions, which are analytic on the whole line ~ = {z}, are uniquely defined, e.g. by specifying the 
values of q',~ and q"~ at the points z = zmn. 

Since the Poincar6 set P = {z,,~} is everywhere dense in R, it remains to apply Theorem 1. 
It is interesting to consider the case when × = 0 from this point of view. It follows from the last equation 

of (5.4) that the following equation holds when z = zmn 

[ ax' 0 - bx0Poip~]W~ = 0 

The zeros of the bracketed expression are the critical points of the function (5.2). In the general case, 
this function is not constant. Since the critical points of an analytic function cannot accumulate in a 
finite domain, Theorem 1 is obviously not applicable in this case. 

6. A P P E N D I X .  SOME I N T E G R A L  R E L A T I O N S  

Let us assume that the domain D is compact and its boundary 0D is a smooth regular surface. Let n 
be the inner unit normal vector to the boundary surface. 

If a heat conducting medium is stationary (v = 0) and Ox/0n = 0 on the boundary 0D, then x = const 
throughout the domain D. Indeed, by the heat flux equation, the temperature in that case will be a 
harmonic function in the domain D. It remains to use a well-known property of solutions of the interior 
Neumann problem (see, e.g. [11]). 

It turns out that this result also holds for steady flows of a perfect gas. The proof uses a technique 
that may also prove useful in other problems of this kind. Because of the impermeability property, the 
velocity field v is tangent to the boundary 0/9. 

Lemma.  Let f :  D ~ R be a continuous function. Then 

(6.1) 

Indeed 

(Of / 0x, or) = div(fl~v) - f div(pv) 

By the equation of continuity, div(pv) -- 0. Formulae (6.1) now follows from Gauss' theorem. 
Another proof of the theorem is based on the use of the Ergodic Theorem. Since D is compact, the function f 

is bounded. Consequently, the time average of the function df/dt = (f'x, v) is zero. The dynamical system (1.1) 
has an invariant measure odax. It remains to apply the individual Birkhoff-Khinchin Ergodic Theorem (see, e.g. 
[12]) to the function df/dt. 

The heat flux equation (the fourth equation in system (5.1)) may be written as follows: 

d(a In x - b In p) /d t  = xAx(px) -I 

By the lemma 

I  d3"--o 

Theorem 3. If 

01nx . ^ / --g-. a . = u  
ao 

then x = const in the domain D. 

(6.2) 

(6.3) 
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Corollary. If Ox/On = 0, then x = const. 

Proof. Applying Green's preparation formula to the integral on the left hand side of (6.2), we obtain 

(6.4) 

By condition (6.3), the left-hand side of this equality vanishes. Since the integrand on the right of  (6.4) is non- 
negative and the integral vanishes, it follows that Ox/Ox = 0. Hence it follows that x = const. 

Let us consider the special case in which the gas flow is periodic in all the coordinates x, y and z. 
Such a flow may be considered as flow in a three-dimensional "flat" torus ~3. Since ~ 3  is the empty 
set, condition (6.3) is obviously satisfied. Consequently, by theorem 3, x = const. It follows from the 
last three equations of system (5.1) that the gas is a barotropic incompressible fluid. It was shown in 
[5] that if the velocity field is not collinear with its curl, such a steady flow in an irrotational force field 
will be regular. Note that the gas flows of Theorem 2 are assumed to be periodic in only two of the 
coordinates, x and y. 
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